Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
St Petersburg Polytechnic University Journal-Physics and Mathematics ; 15(4):69-80, 2022.
Article in English | Web of Science | ID: covidwho-2308666

ABSTRACT

The present paper is devoted to finding the necessary minimum of experimental information on biomolecules for quantitative evaluation of such physical parameters which cannot be directly measured for some reason, but are connected by known mathematical re-lations to any measureable quantities. For the case when thermal dissociation of a complex molecule is possible through several channels due to breaking of various intramolecular bonds, an original analytic expression relating the association degree of biomolecules to its physical parameters and the environment temperature has been deduced. It was exemplified the possi-bility to evaluate (with satisfactory accuracy) some physical parameters of thermal dissociation protease SARS-CoV-2 dimer and the temperature dependence of the association degree of this dimer as well

2.
Sci China Life Sci ; 2023 Apr 14.
Article in English | MEDLINE | ID: covidwho-2297189

ABSTRACT

Protein-biomolecule interactions play pivotal roles in almost all biological processes. For a biomolecule of interest, the identification of the interacting protein(s) is essential. For this need, although many assays are available, highly robust and reliable methods are always desired. By combining a substrate-based proximity labeling activity from the pupylation pathway of Mycobacterium tuberculosis and the streptavidin (SA)-biotin system, we developed the Specific Pupylation as IDEntity Reporter (SPIDER) method for identifying protein-biomolecule interactions. Using SPIDER, we validated the interactions between the known binding proteins of protein, DNA, RNA, and small molecule. We successfully applied SPIDER to construct the global protein interactome for m6A and mRNA, identified a variety of uncharacterized m6A binding proteins, and validated SRSF7 as a potential m6A reader. We globally identified the binding proteins for lenalidomide and CobB. Moreover, we identified SARS-CoV-2-specific receptors on the cell membrane. Overall, SPIDER is powerful and highly accessible for the study of protein-biomolecule interactions.

3.
Sens Biosensing Res ; 39: 100549, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2183030

ABSTRACT

Viral outbreaks, which include the ongoing coronavirus disease 2019 (COVID-19) pandemic provoked by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), are a major global crisis that enormously threaten human health and social activities worldwide. Consequently, the rapid and repeated treatment and isolation of these viruses to control their spread are crucial to address the COVID-19 pandemic and future epidemics of novel emerging viruses. The application of cost-efficient, rapid, and easy-to-operate detection devices with miniaturized footprints as a substitute for the conventional optic-based polymerase chain reaction (PCR) and immunoassay tests is critical. In this context, semiconductor-based electrical biosensors are attractive sensing platforms for signal readout. Therefore, this study aimed to examine the electrical sensing of patient-derived SARS-CoV-2 samples by harnessing the activity of DNA aptamers directed against spike proteins on viral surfaces. We obtained rapid and sensitive virus detection beyond the Debye length limitation by exploiting aptamers coupled with alkaline phosphatases, which catalytically generate free hydrogen ions which can readily be measured on pH meters or ion-sensitive field-effect transistors. Furthermore, we demonstrated the detection of the viruses of approximately 100 copies/µL in 10 min, surpassing the capability of typical immunochromatographic assays. Therefore, our newly developed technology has great potential for point-of-care testing not only for SARS-CoV-2, but also for other types of pathogens and biomolecules.

4.
Biosensors (Basel) ; 12(3)2022 Feb 22.
Article in English | MEDLINE | ID: covidwho-1760366

ABSTRACT

Recent developments of point-of-care testing (POCT) and in vitro diagnostic medical devices have provided analytical capabilities and reliable diagnostic results for rapid access at or near the patient's location. Nevertheless, the challenges of reliable diagnosis still remain an important factor in actual clinical trials before on-site medical treatment and making clinical decisions. New classes of POCT devices depict precise diagnostic technologies that can detect biomarkers in biofluids such as sweat, tears, saliva or urine. The introduction of a novel molecularly imprinted polymer (MIP) system as an artificial bioreceptor for the POCT devices could be one of the emerging candidates to improve the analytical performance along with physicochemical stability when used in harsh environments. Here, we review the potential availability of MIP-based biorecognition systems as custom artificial receptors with high selectivity and chemical affinity for specific molecules. Further developments to the progress of advanced MIP technology for biomolecule recognition are introduced. Finally, to improve the POCT-based diagnostic system, we summarized the perspectives for high expandability to MIP-based periodontal diagnosis and the future directions of MIP-based biosensors as a wearable format.


Subject(s)
Biosensing Techniques , Molecular Imprinting , Biosensing Techniques/methods , Humans , Molecularly Imprinted Polymers , Point-of-Care Systems , Point-of-Care Testing , Sweat
5.
Applied Sciences ; 12(3):1717, 2022.
Article in English | ProQuest Central | ID: covidwho-1731925

ABSTRACT

Several biological macromolecules adopt bivalent or multivalent interactions to perform various cellular processes. In this regard, the development of molecular constructs presenting multiple ligands in a specific manner is becoming crucial for the understanding of multivalent interactions and for the detection of target macromolecules. Nucleic acids are attractive molecules to achieve this goal because they are capable of forming various, structurally well-defined 2D or 3D nanostructures and can bear multiple ligands on their structures with precisely controlled ligand–ligand distances. Thanks to the features of nucleic acids, researchers have proposed a wide range of bivalent and multivalent binding agents that strongly bind to target biomolecules;consequently, these findings have uncovered new biosensing strategies for biomolecule detection. To date, various bivalent and multivalent interactions of nucleic acid architectures have been applied to the design of biosensors with enhanced sensitivity and target accuracy. In this review, we describe not only basic biosensor designs but also recently designed biosensors operating through the bivalent and multivalent recognition of nucleic acid scaffolds. Based on these designs, strategies to transduce bi- or multivalent interaction signals into readable signals are discussed in detail, and the future prospects and challenges of the field of multivalence-based biosensors are explored.

SELECTION OF CITATIONS
SEARCH DETAIL